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We study questions of the stability of the equilibrium position of nonlinear systems 

neutral in the linear approximation. We obtain necessary and sufficient stability 

conditions in the presence of one resonance, as well as some results concerning the 
interaction of several resonances. We show that Liapunov instability follows from 
instability in finite order. 

1. We consider a system of ordinary differential equations with real coefficients 

ax, I dt = A,PXp + A,aYapa-, + * . 7 CL = 1, . . . . II (1.1) 

We study the stability of the equilibrium position .)‘i = . . . = J, = 0 (relative to 
variations of the initial data) if the eigenvalues of the linearized system are ,purely ima- 
ginary, simple, and nonzero (Condition (A)) Under these conditions the question of the 

stability of the equilibrium position in the resonance-free case was examined by Molcha- 

nov (*). This question has been studied for Hamiltonian systems in the presence of reso- 
nances of arbitrary order [l]. The case of one third-order resonance was considered in 
[2] for general systems. In the present paper we have obtained necessary and sufficient 
conditions for the stability of the equilibrium position of system (1.1) in second order by 

perturbation theory in the presence of parametric resonance . We have proved the Lia- 
punov-instability of the equilibrium position of system (1.1) in the presence of an arbit- 
rary third-order resonance if the system is Birkhoff-unstable (in second order) and we 
have examined the question of the interaction of two or of several resonances. In parti- 
cular, we have shown that the interaction of two resonances can lead to instability even 
when each resonance individually does not cause instability. 

Let &, . . ., A,, -X1, . . ., ---A, be the eigenvalues (frequencies) of the system 
being analyzed (21 = n). We say that system (1.1) possesses k th-order resonance if 
integers li,,, (??I = 1, . ., L), exist, not all equal to zero, 1 k, ) + . . . + 1 k, 1 = 

k, such that k,h, f . . . + krh, = 0. (For example, relations of the form 

?Li - 2kj = 0, pi + hj + 1,~ = 0, 1.i L Jvj - l.h =Z 0 

exhaust all third-order resonances). The vector (k,, . . ., k,) is said to be resonant. 

*) Molchanov, A. M., On the stability of nonlinear systems. Thesis for a Doctor’s 
degree, Moscow, 1962. 
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When Condition (8) is satisfied, system (1.1) can be reduced by a quadratic change 
of variables to the normal form (the asterisk denotes conjugation) 

dya / dt = ii,?/, + B,b”ypy/u + . . . 0.2) 

dyya* I dt = la”?ya* + (BZ’)* y B* vu” + . . . 

a = 1, . . . . i; p, 7 = 1, . . . . I, 1*, . . . . I*; ?la* =z ?I,* 

The system 
dy /dt = h a y -{- BpYypy CI a a. a’ (1.3) 

dya*ldt = li,*y,* + (By)* yB*yY* 

a = 1, _,,( I: p. r =- 1, _.., I, I*, . . . . 1”:; ?//a’ = 1J,* 

obtained from (1.2) by discarding all terms higher than second order, is called truncated 
system and we say that (1.2) is stable (unstable) in second order if its truncated form 
(1.3) is stable (unstable). 

Let system (1.1) possess the (parametric) resonance AZ - 21, =O. The first group 
of Eqs. (1.3) then has the following form (the equations for the conjugate quantities are 
computed analogously) : 

dy, / dt = 3L1y1 + B,21*y2y1*, dy, 1 dt = &YZ + Bz11yr2 (1.4) 

dy, I dt = horya, c( := 3 1 . . . . 1 

Passing to a polar coordinate system, yil = otLe iQp, , a = 1 I . . ., I, we obtain 

dp.2 

3 = 2P12P2Pj ($)7 dt 

dpa2 -= dvx A, 
dt O1 di - i 2 T 1, ,._. 1 

where 

9 z ~a - 2~ 1, Bj z A,COS I$ A Bjsirr 9, Pi’ = dPj / dt, i -= 1, 2 

A, = Re Blzl*, B, = ImB121*, A, = ReB;‘, 

B, = -ImB,1’ 

Theorem 1. The equilibrium position ($1 = . . . = p/ = 0) of system (1.5) 
is stable if and only if the condition 

A, = --yA,, B, = -_yB,, r>o (1.6) 

are satisfied. 
Proof. If conditions (1.6) are fulfilled, system (1.5) has the integral 1 = or2 + 

w2* + P32 + . . . $- pl’, whose existence guarantees stability. Bow suppose that con- 
ditions (1.6) are not fulfilled. Let us show that then system (1.5) has a growing solution 
of the type of an invariant ray 

pa (t) = li,O (t), Ii, > 0, 6’ > 0, z, (0) > 0, a = 1, 2, 0.7) 

l$ = Q” --_ const 

Substituting (1.7) into (1.5) we obtain 
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b’ - 2 P2 (qO) b2 
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(1.8) 

A solution of form (1.7) of system (1.5) exists if we can find k, > 0, k, > 0, such 

that 

The first relation of (1.9) is obtained by equating the right-hand sides of the first equa- 
lities in (1.8) ; the second relation of (1.9) is obtained from the vanishing of the right- 
hand side of the last relation in (1.8). The inequality within parentheses can be satisfied 
by taking 2/)0 + n instead of $a. 

System (1.9) as a system of linear equations in sin qO and cos $,, is consistent if its 
determinant equals zero, i. e. 

2 (A,2 + &2)X2 -(&A, + BIB,) x - (AZ2 + Bz2) = 0, x = k," / k,' 

This equation in 1c has a positive root x0. We see that when ‘rt = x0 we can find go 

from (1.9) such that Pi (qo) > 0. (We note that when (1.6) are satisfied, a positive 
root %J = 1 / 3~ exists as well, but for this ‘co the first equality of (1.9) turns into 
P, (qo) = 0, so that the condition within parentheses in (1.9) is not fulfilled). Thus, 

a solution of form (1.7) of system (1.5) exists, and db / dt = n2b2, n # 0, whence 
i~tability follows. The theorem is proved, 

We say that a resonance is included if the corresponding coefficient B,Qy of the reso- 
nance term is not equal zero. A resonance is said to be essential or unessential depending 

on whether it leads to instability or not with the rest of resonances excluded, In these 
terms Theorem 1 can be formulated in the following manner : the resonance 3L2 - 2h,= 
0 is essential if and only if one of the solutions of system (1,s) is an invariant ray. 

An analogous assertion is true for the resonant vectors h_ (1, -1. ---I. 0, . . ., 0), 

k (1, 1, 1, 0, . . .? 0) (see [Z] ). Third-order resonances can only be of the types indi- 
cated ; therefore, the following general statement is valid. 

Theorem 2. Let system (1.1) possess one (arbitrary) resonance of third order. For 
the resonance to be essential in the second order it is necessary and sufficient that among 
the solutions of the truncated system there be a growing solution of the invariant ray type, 

We note that the resonance 1 : 2 is almost always essential, whereas the resonance 
1 : 1 : 1 leads to instability in only half the cases. 

3. Theorem 3. If system (1.1) possesses the resonance h, - 3h, = 0, then Lia- 
punov-instability follows from instability in second order of the equilibruim position, 

The presence among the solutions of the analog system of a specific solution (an inva- 
riant ray) is a necessary and sufficient condition for the instability of the truncated sys- 
tem. The complete system (1. l), differing from the truncated one only by higher terms, 
may not have such a solution. However, it turns out that the complete system’s solutions 
in some neighborhood of the invariant ray of the truncated system remain growing. 

Proof. Under the conditions indicated system (1.2) appears in the following form 
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(the equations for the conjugate quantities are computed analogously): 

. 1*2 * 

Xl = a,q+ Bl 51*x2 r x~B’;’ xjxj” + RI (2.1) 

. 
x2 = h2x2 + Bg1x12 -t x2 B Ii* 2 xjxj” -I- R, 

xlf'= hkXh. + 
jjr 

xCB~ sjxj" + i?,, /t' 7 ~,....l 

Here Nk denotes the higher-order terms : the degree of K,, R, in the variables sl! . . . , 
5,” is higher than three, the degree of R3, . . ., R, is higher than four. In the variables 
Par CPU. L% = Pa+, a = 1, . . ., I) we write down only that subsystem which does 
not contain (pZ’: . . ., 91’ 

y = 2p,2p, P, (3) -1 (I,2 (C&2 + Cgp2~ + S,) -t R,, 1=1,2 (2.2) 

dp$ 
-z 

dt 
p~~(c~~p,’ i- C2pp22 -i-SD) + Rp, p = 3, . ..) 1 

dij 
-- E 
dt 

2[)1"~2 $ i- $1 A- (JQ)~ + L2?,2 + 1) -t j-z+1 
I( 

-- 
l'j ($) z Aj COST -ml Bj sin $, $ ~z (~2 - 2~1, I?, - RX (01, ...) ~1, Cpj $ 

1 

N ~ ~ Ljl’j~, l’j’ T ~ , S, _= ~ Cj”E’j’ 
1=3 , -73 

Here Aj, Bj, Cij, Li are real coefficients, while 17, denotes terms of higher orders 

in comparison with the written ones. 
The conditions for the existence of an invariant ray in the truncated system are the 

following (see (1.9) ) : 

1’2 (G”) = k2P, (TJ”), P,’ ($0) = - 2k”P1’ (G,,), !I1 ($) > 0 (k = h-2 / 12,) (2.3) 

Using these conditions we reduce system (2.2) to a more convenient form. At first we 

introduce the variables r, (p: p1 = Ic-‘rsin q, p2 z r cm i$. In the variables r, v, 

p3, . . ‘? pL system (2.2) takes the form 

~-_~‘(~II_~~~)~i np ,Cos, -f + (S, sin’) 5 + S, co,?? G) + (2.4) 

- C,’ 
&sin” w 

i 
h” sin3 (p + Cl’ c0S2ji 

1 
+ 

f co2 Tj cg sin” ; + C,’ ,,s’,j + Rol 
i 

d6 
dt= 

r sin Cp P, cos2ij - 
( 

-$ sin” G\’ + 
I 9 - .\I, 

$-sin (p cos cp 
li 

- 
F sin2 (p I. !- ,lI, co? C$ + _lI + I?,’ 

i 
dv r 

( 

- P.3’ _j 

dt = coscp 
WI’ cos* rp -f- h-” sin? (p 

i 
$ 

$ 
( 
-$ sin” (p -/- L, cos? 6) + N + R,’ 

a=3,....1 
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j=3 

Here the degree of R,,l in r, p3, . . ., pl is higher than four, the degree of al’, Rar 
is higher than two, and the degree of Ra’, . . ., Rl’ is higher than five. The values 
q = n / 4, < = s,, correspond to the truncated system’s invariant ray. Making the 

substitution cp = q - n / 4, 9 : q - $,, and expanding the right-hand sides in a 
Taylor series in a neighborhood of cp = 0, ‘Ic) = 0, by taking the existence conditions 
for ray (2.3) into account and restricting ourselves only to terms of first order in q and 

$,we finally write the system as 

(2.5) 

dgi - = -+ (- 4PCq +3P 
dt 

10’$) + Er2 + +-Jl+ 91 

4’ -= 
dt 

+- 8Pl”‘cp -3P,“$) -I- $($ -I- t2) + IV + Q2 

dp,e ).3 
- = pa” 

dt 
Lx +c2q + s,pz2 + Qa, p a=3,...,1 

Pa0 = P, (i&), P,“’ := &‘(\l’,,), E = $ (+ + Aft! 

Here Q, denotes higher-order terms. 
We now show that for a suitable choice of 6 the function 

F (r, cp, $, p3, . . ., pl) = cpz + ey + p3 + . . . + pl -r 

is a Chetaev function for system (2.5) i.e. in the region F < 0 , by virtue of (2.5), 
the derivative dF / dt -c, 0. We have 

(2.6) 

Because 
'p2 < r, 6z$2 < r, 1)3 + p4 + . . . + pl < r (pj > 0) 

in the region being considered, the terms within the brackets are unessential in compari- 
son with quantities of the order of r2 at sufficiently small r . 

Let us show that we can choose 6 such that the expression 

-r2P,0 - 1($2rcp+p,” - 6rP2)“Pl” - 4rcp2Plo + 3rcp$P,"' 

is negative. Since PI0 > 0, it suffices to state that the quadratic form invariables cp,~# 
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is positive definite. We see that the discriminant D (6') of this form has two positive 
distinct roots and, therefore, we can always choose the required 6. The theorem is proved. 

The proof of the analogous assertion for the resonance hr + k, + As = 0 is some- 

what more difficult. 

Theorem 4. If system (1.1) possesses the (third-order) resonance I,, + A2 -r 

h, = 0, then the Liapunov-instability of the equilibrium position follows from its insta- 
bility in second order. 

Proof. In analogy with the preceding, the question of the stability of the equilib- 
rium position of system (1.1) is reduced to the investigation of the following system : 

dPa2 
- = 

dt 2,0lP203~~a ($) + pa2 (cyo12 +- czap22 + C,“p32 + S”) + R,-1, , (2.7) 

r=1,2,3 

dPa2 _ -_ 
dt 

pp* (clpp12 $m czpp?2 + c&$ + SP) + pg-I, 

p=4,...,1 

dT 
- = plp2p3 >+ + dt i -$- + -$I) + hp1~4452p2~ + L3P3’ + N’+iR, 

P,(q) = A, cos$ + B, sin%, $=cp 1 i- cp? + (P31 

Ri = 4 (~17 * * .t p/t $9 ~1) 

N' = i L;$, P,'= z$, S"z -&p;* 
j==a j=r 

A,, B,, ci, Lj are real coefficients, Ri denotes terms of higher order in comparison 
with the computed ones. The necessary and sufficient conditions for the existence of 
the invariant ray 

pa = k,b (& k, > 0, a = 1, 2,3 
db2 / dt = x2b3, x#O, T = $0 = const 

are the following: 

k,2P, ($a) = h-r2J’, ($A, lcs2P, ($a) = kr2P, C&J (2.8) 

r’l;sJ) 1 “;,‘p’ 1 yy - 0, Pa(%)>O, a=l, 2,3 

Using these conditions we write system (2.7) “in a neighborhood” of the invariant ray. 

For this we introduce the new coordinates r, (p, 0, 9 

pr = k,r cos (0 -;- 0,) cos (q2 + n / 4) 
pz = k,r cos (0 -; 0,) sin (cp -t n / 4) 

p3 = k,r sin (0 -1 O,,), $ = $ --$,, 

(cos 0, =- jB-/ vz sin 8, = 1 / 1/Z) 

The values cp = 0, 8 = 0, I# = 0 correspond to the invariant ray. Expanding the 
right-hand sides of the tranformed system in Taylor series in a nighborhood of tp = 0 = 
+$ =U, by taking (2.8) into account we obtain 
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.lJj = Cj' - Cj2, ll/ro = $ (Flk12 + F2kt2 $- F:,k:s’), N’ = 2 Ljpj’ 
i:r 

_v, -_ + (Clak13 -+ C2akf2 + C,“k:s2) 

(QrJ’ . . ., Ql denote higher-order terms). By analogy with the preceding we can verify 
that for a suitable choice of 6 and for sufficiently small r 

F = 4cp” + 4” -I- 6”O” + p4 + . . . + pr - r 

is a Chetaev function for system (2.9). 

3. Illt6r&CtiOll Of rONOPlIlCO8. Definition. Two resonances with the 
resonant vectors k, (k,,, . . ., k,,) and k, (k,,, . . ., k2,) are said to be independent 
if the resonance relations do not have common frequencies, i. e. if 

,:_ 1 

A system having independent resonances splits up (in the second order) into noninter- 

connected subsystems (in suitable coordinates) ; therefore, the stability or instability in 
second order of the equilibrium position depends on whether all the resonances are unes- 
sential or at least one of them is essential. 

We say that s resonances are linked in m frequencies (eigenvalues) if m frequencies 
occur in the resonance relations considered. For the (third-order) resonances we are stu- 
dying the cases m = 1, 2. s := 2 (m cannot equal three since zero frequencies are 
absent). It is convenient to use the following linkage schemes: 
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A. We first examine the case m = 1, s = 2. Let us show that if both resonances 
are unessential, then the eq~~~brium position of the system being considered is stable, 
Let us verify the validity of this statement by rhe example of interaction of the follow- 
ing resonances: AZ - 2h, = 0, A4 - A, - h, = O.~he remaining cases are ana- 
lyzed analogously. Under the conditions being considered the truncated system (1.1) in 
polar coordinates has the following form: (we write down only the equations for p,) 

dp,” / dt = 2Q1zp2P, (*1), dpz2 ! dt = 2p12pzP, (I@,) -i-- 13.1) 

%@3P4Q1 (%I 

dps2 i dt == 2pzp3~.,Qz (44, 
dp4” I dt = 2p,p,p,Q, ($2) dp,” 1 dt = (4 !x = .5. . ., 1 

Pj =AjCOS$,+Bjsin9,, j=l, 2, 11‘, --: ‘pl - “tpl 

(I, = Cl, COS$~ -1 Dk sill &, .I,.= 1, 2, 3: 92 -qJ(p-,--tpp)s--cp3 

Here Aj, Bj, ck, D I! are real coefficients. By hypothesis, P, = -4P, (see (1. 8)), 
while the determinants 

have the same sign (see f2]) ; to be specific let Dj > 0. We can verify that system 
(3.1) then has the integral I 

I = l),ky?, + D&2 + I&p32 + II&3 + 2 pj” 
j =j 

whose existence guarantees stability. 
Now suppose that at least one of the resonances is essential. We shall show that in this 

case the equilibrium position is unstable. Let us consider the interaction of two resonan- 
ces of type 1 : 1 : 1 

h, + A, +- h, = 0, h, + h, + h, = 0 

of which the first is essential. By this example it is easy to ascertain the general course 
of the proof for any two third-order resonances. Under the given conditions the normal 
form of system (1.1) is (the equations for the conjugate quantities are analogous) : 

y1’ = &Y, + B,Y,*Y,* -t- &Y,"Y," 

y2’ = h,y, + B,Y,*Y,*, Y; = &YS -I- &Y~"Y,* 

~4’ = &y4 f B,Y,"Y,", ~5' = &Y, i- BsY,*Y,* 
l 

Ya -= &Ya 3 r=F,...,l 

We show that this system has a growing solution. Having set y4 = . . . == y1 = 0, we 
obtain a system which by hypothesis possesses an invariant ray. Thus, the equilibrium of 
system (1.1) having two third-order resonances linked in one frequency is stable in second- 
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order if both resonances are unessential, and is unstable if at least one of them is essen- 
tial. This last statement is valid, obviously, for any number of resonances. Thus the situ- 
ation corresponds completely to the already examined case of independent resonance. 

B . Let the resonances be linked in two frequencies, This case differs qualitatively 

from the ones preceding in that the interaction of two unessential resonances can lead 
to instability. Let us consider a system depending on a parameter fi and let us show that 
the equilibrium position is stable for p > fir and is unstable for p < Pa 

Let As + 2h, = 0, a, _ A, + h, = 0, let both resonances be unessential, and 
let the system in polar coordinates have the form 

dpr2 I dt = -6j2p12pz sin +I -I- 2w2Win $2 

dp22 / dt = 10p12p, sin *I - 2pprpaPasin $2 

dps2 / dt = 3pip,p, sin $* 

‘cl+1 
- - 5P12PZ (- & + +) cos *1 - PlP2P3 (+ + +) cm $2 dt 

d$x 
dt= 5p12p2 cos +1+ PlP2P3 i,+- $-+ g+os~2 

This system has the integral 

librium position is stable for 
the following invariant ray : 

~1 = b (t), 

b’ (t) > 0, 

1 = 4pl2 f p22 f 2/3 (ffi - 4)ps2, therefore, the equi- 
p > 4. We see that for p < ‘1s the system’s solution is 

v _- 
p2 =2. Tb(t), p3 =2b(t) 

b (0) > 0, I)~ = 41~ = x / 2 

SO that the equilibrium position is unstable. The Chetaev function is easily written down. 
An analogous example can be cited for the case B (a): Al -tm h, - pu3 = 0, ?L, _t 

h, -A, = 0 and 
dp12 - = ~)lj)J;~3 sin $, 

d,,?J 
dl 

- _ - i)p1p2p3 sin Ii’, 1 fi!j1;)a;)4 sin I$? 
!1 

- _ 2p1p2p3 sin ?#I - ?1.,0. 0 sir1 ‘$?, 
rl .a’) 

dl , , -t .J, 4 -z-J- = f’._‘;; !* sin I): 
C!’ 

Only terms of the form / (;))cos $), occur in the equations for $r‘ and $2’. For /!I > 
12 this system has a positive-definite integral 1 = {)I? -, psz Tim 11~2 ,’ 2 -L (0 /! :! _ 

G)pg’), while for fi ( :! 

1’1 = P4 

0 ((9 > 
The author thanks the 

ful discussions. 

it has the invariant ray 

= 6 (t), p2 = “6 (t), ()a : 1/Z -[-! b(t) 

0, 6’ (t) > 0. q1 -= I+~ : x / 2 

director and participants of V. V. Rumiantsev’s seminar for use- 
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